Category Archives: Object ID

Identification – flint, fossil sponge

Figure showing flint nodule from chalk

In Essex and south east England, almost every pebble on the beach and in gardens is flint. It’s a hard rock found in the Chalk, a soft, white, limestone layer that is up to 200m (600 ft) thick in north Essex and Cambridgeshire. In north west Essex, this chalk is between 90 million and 66 million years old and lies just below the soil, north of a line running from Stansted to Sudbury.

Diagram showing bedrock geology of Essex

Diagram showing the main bedrocks across a section of Essex. Chalk appears as the bedrock across northern Essex. Credit: reference 1.

Chalk started out as a thick mud on the floor of a tropical sea that covered most of Britain and north west Europe. This mud contained the remains of tiny sea creatures (plankton) which grew shells of calcium carbonate. When they died, these plankton and their shells fell to the sea floor to form a thick mud, which compacted into chalk over millions of years.

As it compacted, it squeezed out the seawater containing dissolved quartz, or silica (which comes from the skeletons of tiny sponges, a very simple animal).This silica was pushed out into gaps, cracks and burrows in the chalky mud to form nodules or layers of flint. These flints have a white outer layer (cortex), and are black inside. They can come in very complicated, bulging shapes, or with spikes, holes and cavities. Because of this, they can be easily confused with fossilised bones.

Figure showing flint nodule from chalk

An irregular flint nodule with a white cortex. Credit: reference 2.

Some flints do contain fossils, often urchins, or cockles or other small shellfish. Sometimes, the whole flint looks like fossil, and this may be because the silica that created it was forced into a hollow space in the hardening chalk which contained a sponge. Sponges are very simple animals which live on the sea floor. They still exist today, and the earliest known fossil sponges are  580 million years old.

The silica fills the gaps in the sponge’s skeleton and, over millions of years, the skeleton itself can dissolve away and be replaced by other minerals. This skeleton is a fossil, and the flint fills the spaces left by the soft parts of the animal after they rotted away.
Sponges are hollow tube or cone shapes and have no muscles, stomach, brain or nerves. They are filter feeders that catch bacteria and microscopic plants & animals from seawater that flows through tiny channels (pores) in their body.  Sponges are open at the top, and water currents flowing across the opening helps pull in water through the pores and remove it from the centre chamber, like wind blowing across a chimney.

Diagram showing water flow through a sponge's body

A simple diagram of a sponge’s body showing the pores in the sponge’s body, and the direction of water flow (blue arrows). Credit: reference 3.

Figure showing a living sponge

A living sponge, showing the typical hollow tube shape. Credit: reference 4.

The first sponge below is preserved in chalk and is a typical funnel shape. Some fossils may have a textured ring around the top, showing the rough pattern of the sponge’s surface and pores, like in the second photo.

Figure showing typical funnel shaped sponge

Fossil of a sponge (Ventriculites species) that lived in the Chalk sea. This sponge attached to the sediment with its branching roots. © SWM.

Figure showing rim imprint of a sponge's body in flint.

A flint nodule showing the imprint of the upper rim of a sponge’s body. Credit: reference 5

References

  1. Essex Bedrock, Essex Rock 1999. GeoEssex.org, retrieved 11:36, 24.4.2020
  2. © G Lucy. GeoEssex.org, retrieved 11:31, 24.4.2020
  3. Adapted from: Porifera_body_structures_01 By Philcha – Own work, CC BY-SA 3.0
  4. NOAA Photo Library reef3859 By Twilight Zone Expedition Team 2007, NOAA-OE. , Public Domain,
  5. Flint rim print. flint-paramoudra.com, retrieved 11:47, 24.4.2020

Identification – cattle hock bone

Photo of the calcaneus.

Cattle right-side calcaneus (heel bone)

The calcaneus in humans is the heel bone, and is the first point of contact with the floor when we walk. However, cattle are ‘nail-walkers’ – walking on the very tips of their toes with the rest of the foot held off the ground. This means the first joint from the ground on the hind leg is the ankle (hock), not the knee, which is why it bends in the opposite direction to our knee. The knee is further up the leg, almost hidden by the leg muscles, while the hip is very high up, just below the base of the tail.

Diagrom to show position of hock in cattle leg

The hock bone (calcaneus) is shown by no. 32 (bottom right). 31 shows the ankle joint and 30 shows the knuckles of the toes. 27 shows the knee joint (bottom middle). Image credit: reference 1.

The bovine foot has 15 bones, grouped into 7 tarsals (talus, calcaneus, and five others), 2 metatarsals (running from the tarsals to thethe two toes). These correspond to the 3rd and 4th metatarsals in human feet The big toe has the first metatarsal). The cow has 6 phalanges (three in each toe).
For comparison, humans have 26 foot bones, comprising 7 tarsals, 5 metatarsals (one leading to each toe) and 14 phalanges (two for the big toe and three for every other toe).

Diagrams showing skeletons of the cattle and human foot.

15-21 are the ankle bones, 23 and 24 are the metatarsals, and 26-28 show the three phalanges in each toe. The same bones are labelled in the human foot on the right. Image credits: references 2 and 3.

(The image above actually shows the front leg of a cow, with the wrist and not the ankle bones, but the other bones are generally the same.)

Photo of the calcaneus.

The original bone I was asked to ID. © Saffron Walden Museum.

In life, this cattle calcaneus is from the right hock and has the smooth side faces outward to the right, as in the photo above. The shaft of the bone is then pointing up and back, toward the tail of the animal, to form the distinctive point of the hock in the cow’s leg (no. 32 in the first diagram). The top of the bone  is the attachment point for the large muscles of the lower leg. These are the gastrocnemius and soleus, (the ‘calf muscles’ in humans).

Some of the more fragile edges of this calcaneus are missing, but you can still see the main features.

This photo is pretty much a close-up of the photo above, from the bottom end. © Saffron Walden Museum.

In the photo, the letter A shows a smooth articular surface for the 3rd and 4th metatarsals, and B is one of the articular surfaces with the talus. C is a dome-shaped articular surface for the lateral malleolus, a bone on the outer edge of the hock.  The roughened depression (D) in the centre of the plate is called the tarsal sinus, and is mirrored by a similar area on the talus. This cavity houses blood vessels, fat, nerves, and a series of ligaments which hold the tarsal bones together.
The talar shelf (E), is at the near end of the shaft, and helps support the talus bone which sits above it. There is also a groove (F) for the tendon of the flexor digitorum lateralis muscle, which bends the toes.

 The calf muscles which attach to the top of the bone help straighten the leg when walking and running, while the length of the bone acts as a lever to amplify their effect and increase make the movement more efficient This is especially important in animals such as cattle, whose ancestors and wild relatives migrate across continents and run to escape predators.

 – James Lumbard, Natural Sciences Officer.

 

References

1. Domestic_animals;_ _history_and_description_of_the_horse,_mule,_cattle,_sheep,_swine,_poultry,_and_farm_dogs,_(1858)_(14598393827)
By Internet Archive Book Images – https://www.flickr.com/photos/internetarchivebookimages/14598393827/Source book page: https://archive.org/stream/domesticanimalsh00alle/domesticanimalsh00alle#page/n51/mode/1up, No restrictions, https://commons.wikimedia.org/w/index.php?curid=44520464

2. Cattle hock skeleton diagram © https://www.dcfirst.com/cow_skeletal_anatomy_poster.html Accessed 31.3.2020.

3. BruceBlaus. :Blausen.com staff (2014). “Medical gallery of Blausen Medical 201”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. / CC BY 3.0

Identification – Limonite

Yellow limonite on brown goethite.

Limonite (pronounced “lime-on-ite”) is an iron ore similar to the more well-known iron oxides haematite and magnetite. It often forms as existing deposits of these other minerals react with water in an oxidation reaction, turning the iron oxide into iron oxide-hydroxide. This interrupts the regular crystal structure and opens up microscopic gaps that trap other water molecules in positions where they can’t chemically react and bond with the iron atoms. Water which forms part of the molecular structure of in this way is called ‘water of crystallisation’.

Yellow limonite on brown goethite.

Limonite can be ground up to produce the pigment yellow ochre, famous from prehistoric cave paintings. This sample from the Museums’ mineral collection has yellow limonite on brown goethite, another form of iron hydroxide.
Image: © Saffron Walden Museum.

Scientifically, limonite does not meet the criteria of a ‘true’ mineral, which must have a consistent chemical formula and molecular crystal structure. Because limonite forms as a replacement for several other minerals, this means that the crystal structure is not consistent. Variations in the original mineral, the compounds dissolved in the water and the environment where it forms, also mean the relative amounts of iron oxide, iron hydroxide and water of crystallisation are not constant either.

Four small, rounded pieces of limonite

These pieces of limonite were originally pieces of the gemstone garnet. Iron-rich water filtering through these stones replaced the original garnet mineral with limonite, keeping the shape.
Image: Eurico Zimbres FGEL/UERJ CC BY-SA 2.0 br (Wikimedia Commons)

Limonite may be any colour from a rich yellow to a dark brown, and was used historically to make the yellow ochre pigment which is still produced in this way in Cyprus. Despite this variation in colour, an easy way to distinguish it from haematite is the ‘streak test’. This can be used to separate many minerals which may appear similar to the eye, by rubbing the mineral along a piece of un-glazed white porcelain. Limonite will leave a yellow-to-brown streak, whereas haematite produces a red streak.

Two forms of haematite leave a rusty red streak on ceramic, central.

Two different forms of haematite both leaving a rust-red streak.
Image: KarlaPanchuk [CC BY-SA 4.0] (Wikimedia Commons)

Deep red botryoidal (grape-like) haematite.

This is an easily-recognised form of iron oxide, haematite. The rounded, bulbous form is described as ‘botryoidal’, meaning grape-like in Greek.
Image: © Saffron Walden Museum

 – James Lumbard, Natural Sciences Officer.

Identification – Ammonite in sandstone

One of the most interesting parts of working in museums is helping people discover something new (and I usually learn something new myself). A really important way for museums to do their job as a welcoming public source of information is by identifying mystery objects that you might find on a walk, on a seaside holiday or even in your garden or attic.
Anyone can bring in an item for us to identify, for free, and you should have an answer within a few weeks. It might look a bit like this:

Ammonite in sandstone

This piece of stone is a Jurassic fine-grained sandstone or sandy limestone, which may be from the Lias Group rock unit found on the Dorset coast, although it has a sandier appearance and rougher texture than the rocks usually found in this formation. If it is from the Dorset Lias formation, the rock is roughly 195 to 200 million years old, and the fossils it contains would be a species of Promicroceras ammonite, which are common along the Dorset coast.

Fossil of a Promicroceras ammonite.
Image: Ammojoe CC BY-SA 3.0 (Wikimedia Commons)

The bristleworm, Polydora ciliata. Image: Yale Peabody Museum of Natural History [CC0] (Wikimedia Commons)

 

 

 

 

 

 

The surface pattern of pores in the rock was made much more recently. They were probably made by a species of Polydora worm, probably Polydora ciliata. P. ciliata is a small, rock- or shell-boring worm which can grow up to 30mm (1 1/8 in.) long, and is also known as a bristleworm.

P. ciliata burrows in stone. Image: Rosser1954 CC BY-SA 3.0 (Wikimedia Commons)

Bristleworms are thought to burrow into rock or shell by scraping away at the surface using specialised bristles on the fifth segment of its body, although it may also secrete chemicals such as weak acid to help. It digs a U-shaped burrow, which appears on rocks as distinctive small slots or a ‘sunglasses’ shape.

 – James Lumbard, Natural Sciences Officer.