Tag Archives: biology

Identification – deer calcaneus

It looks like a calcaneus bone, which in humans and other primates is the heel bone of the foot. This one is from a left leg. In most non-human mammals it looks like it’s halfway up the hind leg, but serves the same purpose as the attachment point of the calf muscles (gastrocnemius and soleus), and its length acts as a lever to make the muscle action more powerful when flexing the foot towards the ground.

Black background with a tape measure vertical, centre-left and a bone vertical, centre-right. the bone is wider top than bottom, with points at top and top left.

Mystery bone © S Moore

As a tentative ID from reseraching from my desk in the UK  is white-tailed deer (Odocoileus virginianus), based mainly on its size and coming from Mississippi. The bone is a bit worn so some of the sharper and edges and points are missing, but the overall shape of the wide end looks like it matches the photos here https://www.boneid.net/search/?product_cat=wt_deer&pa_anatomic-elements=calcaneus&order=DESC. The length is about right too, if you imagine adding back on the points and edges that have been worn away.

For much more information on the calcaneus bone, see this ID of a cattle calcaneus Identification – cattle hock bone

Object of the Month – June 2022

June’s object of the month celebrates the Lost Language of Nature project, with repair work to this hen harrier. With Lost Language of Nature, we want to hear your stories about wildlife and nature in your life, or rhymes, songs and sayings for all kinds of animals that you might have heard from parents or grandparents. For example, different old names across the country for hen harriers include Blue sleeves, Vuzz kitt, Grey gled, Furze kite and Goss harrier; or Ringtail for females, like this fragile mounted skin. Head to our website for more information https://www.swmuseumlearning.com/the-lost-language-project

This bird came to the Museum in the 1800s, and was taken from the area around Saffron Walden. Today, hen harriers only live in the north of England, north Wales, in Scotland and on Scottish islands, including Arran and Orkney.

Hen harrier on temporary base during conservation work.

Hen harriers today

Hen harriers are one of the UK’s most endangered birds of prey, with only an estimated 545 breeding pairs left in the country. They are on the RSPB’s Red List of endangered species in Britain, but listed as ‘Least Concern’ globally by the International Union for Conservation of Nature.

Work carried out by the RSPB suggests that over 2,500 pairs could survive in the UK. They live in open areas with low vegetation, like heather moors.

Between 2014 and 2019, the RSPB ran the LIFE project to learn more about hen harriers in Britain, their movements throughout the year and to understand why their numbers are so low. They tagged over 100 birds that they tracked using satellites, and found that some fly 1000 miles to spend the winter in Spain and Portugal. Not all birds do this though – the brother of one of these wandering birds always stayed within 50 miles of where he hatched.

In the UK, hen harriers are protected under Schedule 1 of the Wildlife and Countryside Act, meaning it is illegal to kill, injure or capture the birds, their eggs or nests, or even disturb the birds and their young while they are nesting. Despite this, the study showed that the numbers of breeding hen harriers fell by 24% (about one-quarter) between 2004 and 2016. In particular, the project monitored seven Special Protected Areas in parts of the country where land is managed for driven grouse shooting. In these seven areas, hen harrier numbers fell by over 80%, which suggests that there is deliberate human action to reduce their numbers in these areas.

References

https://www.rspb.org.uk/birds-and-wildlife/wildlife-guides/bird-a-z/hen-harrier/

https://www.rspb.org.uk/our-work/conservation/projects/hen-harrier-life/about-the-project/

https://community.rspb.org.uk/ourwork/skydancer/b/skydancer

https://community.rspb.org.uk/ourwork/skydancer/b/skydancer/posts/hen-harrier-apollo-bomber-migrate-1000-miles-to-spain

https://www.rspb.org.uk/our-work/conservation/projects/hen-harrier-life/best-places-to-see-hen-harriersnew-page/

Object of the Month – October

Dark stone with faint tracing of a fossil flower in two petal shapes

October’s Objects of the Month are pieces of fossilised plants.

Fossils can form in different ways depending on where they form and the type of plant or animal. Most fossils come from the hard parts of animals such as bones, teeth or shells. For plants, wood is the most common material to fossilise because it is quite hard, and takes longer to rot away than other parts.
Soft leaves and flowers need to be buried quickly in deep sediment like mud or volcanic ash where the low oxygen levels mean they won’t rot. Once underground, plant material can fossilise in different ways.

Compression

Dark stone with faint tracing of a fossil flower in two petal shapesThis flower is probably preserved by compression, like pressing and drying it in fine mud over millions of years. Heat and pressure deep underground turned the mud to stone and forced moisture and gases from the leaf at the same time.

The main ingredient in living plants is carbon, so a thin, black, carbon-rich film is all that’s left. In most fossils, new minerals replace the original material. But because this is a compression fossil, the carbon-rich film is the exact same carbon that was in the plant millions of years ago. Soft-bodied animals like squid can also be preserved like this.

Impression

Dark stone showing inpression of a fern leaf, with fronds alternating in an exaggerated sawtooth pattern

© SWM

This fern leaf, or frond, is preserved as an impression. When something soft is preserved by compression, the shape of it is also preserved as an impression, like pressing a leaf into soft mud or clay and then removing it.

This fossil is one part of a small rock nodule which was split in two to show the leaf – this part shows the impression of the frond. Because compression and impression fossils usually form together, the word ‘adpression’ describes both at the same time.

Petrification

Wedge of dark fossil wood, narrow at left. Lines of pale grey run top-bottom showing growth rings.

© SWM

Fossilised wood is often called ‘petrified’ wood, meaning wood ‘turned to stone’. It happens when the materials (cellulose and lignin) that make up the solid part of wood are replaced by minerals, turning it to stone.

Minerals dissolved in groundwater seeping through the sediment settle as solids in the microscopic cell walls of the wood as the cellulose and lignin slowly rot. This can create a perfect stone copy of the original structure of the wood.

See these objects up close in Curiosity Corner throughout October.

Identification – cattle hock bone

Photo of the calcaneus.

Cattle right-side calcaneus (heel bone)

The calcaneus in humans is the heel bone, and is the first point of contact with the floor when we walk. However, cattle are ‘nail-walkers’ – walking on the very tips of their toes with the rest of the foot held off the ground. This means the first joint from the ground on the hind leg is the ankle (hock), not the knee, which is why it bends in the opposite direction to our knee. The knee is further up the leg, almost hidden by the leg muscles, while the hip is very high up, just below the base of the tail.

Diagrom to show position of hock in cattle leg

The hock bone (calcaneus) is shown by no. 32 (bottom right). 31 shows the ankle joint and 30 shows the knuckles of the toes. 27 shows the knee joint (bottom middle). Image credit: reference 1.

The bovine foot has 15 bones, grouped into 7 tarsals (talus, calcaneus, and five others), 2 metatarsals (running from the tarsals to thethe two toes). These correspond to the 3rd and 4th metatarsals in human feet The big toe has the first metatarsal). The cow has 6 phalanges (three in each toe).
For comparison, humans have 26 foot bones, comprising 7 tarsals, 5 metatarsals (one leading to each toe) and 14 phalanges (two for the big toe and three for every other toe).

Diagrams showing skeletons of the cattle and human foot.

15-21 are the ankle bones, 23 and 24 are the metatarsals, and 26-28 show the three phalanges in each toe. The same bones are labelled in the human foot on the right. Image credits: references 2 and 3.

(The image above actually shows the front leg of a cow, with the wrist and not the ankle bones, but the other bones are generally the same.)

Photo of the calcaneus.

The original bone I was asked to ID. © Saffron Walden Museum.

In life, this cattle calcaneus is from the right hock and has the smooth side faces outward to the right, as in the photo above. The shaft of the bone is then pointing up and back, toward the tail of the animal, to form the distinctive point of the hock in the cow’s leg (no. 32 in the first diagram). The top of the bone  is the attachment point for the large muscles of the lower leg. These are the gastrocnemius and soleus, (the ‘calf muscles’ in humans).

Some of the more fragile edges of this calcaneus are missing, but you can still see the main features.

This photo is pretty much a close-up of the photo above, from the bottom end. © Saffron Walden Museum.

In the photo, the letter A shows a smooth articular surface for the 3rd and 4th metatarsals, and B is one of the articular surfaces with the talus. C is a dome-shaped articular surface for the lateral malleolus, a bone on the outer edge of the hock.  The roughened depression (D) in the centre of the plate is called the tarsal sinus, and is mirrored by a similar area on the talus. This cavity houses blood vessels, fat, nerves, and a series of ligaments which hold the tarsal bones together.
The talar shelf (E), is at the near end of the shaft, and helps support the talus bone which sits above it. There is also a groove (F) for the tendon of the flexor digitorum lateralis muscle, which bends the toes.

 The calf muscles which attach to the top of the bone help straighten the leg when walking and running, while the length of the bone acts as a lever to amplify their effect and increase make the movement more efficient This is especially important in animals such as cattle, whose ancestors and wild relatives migrate across continents and run to escape predators.

 – James Lumbard, Natural Sciences Officer.

 

References

1. Domestic_animals;_ _history_and_description_of_the_horse,_mule,_cattle,_sheep,_swine,_poultry,_and_farm_dogs,_(1858)_(14598393827)
By Internet Archive Book Images – https://www.flickr.com/photos/internetarchivebookimages/14598393827/Source book page: https://archive.org/stream/domesticanimalsh00alle/domesticanimalsh00alle#page/n51/mode/1up, No restrictions, https://commons.wikimedia.org/w/index.php?curid=44520464

2. Cattle hock skeleton diagram © https://www.dcfirst.com/cow_skeletal_anatomy_poster.html Accessed 31.3.2020.

3. BruceBlaus. :Blausen.com staff (2014). “Medical gallery of Blausen Medical 201”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. / CC BY 3.0

Object of the Month – August 2018

Red squirrel - August object of the month

August’s Object of the Month is a red squirrel. The mammal was chosen as Object of the Month by Sarah Kenyon, Natural Sciences Officer.

This red squirrel was found dead at Saffron Walden, Essex in August 2003. It had been run over by a car in Landscape View. A member of the Uttlesford group of Essex Wildlife Trust gave it to Saffron Walden Museum to be preserved. The body was mounted, or stuffed, by a taxidermist. This red squirrel has russet red fur on its body and tail, with white fur on its chest and belly. Male and female squirrels look identical.

Continue reading